Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We infer the growth of large scale structure over the redshift range 0.4 ≲z≲ 1 from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latestPlanckand ACT data.We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime.We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample.We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales.From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with ΛCDM with an overall amplitude that is ≃ 5-7% lower than predicted by primary CMB measurements with modest (∼ 2σ) statistical significance.From the combined analysis of all four bins and their cross-correlations withPlanckwe obtainS8= 0.765 ± 0.023, which is less discrepant with primary CMB measurements than previous DESI LRG crossPlanckCMB lensing results.From the cross-correlation with ACT we obtainS8= 0.790+0.024-0.027, while when jointly analyzingPlanckand ACT we findS8= 0.775+0.019-0.022from our data alone andσ8= 0.772+0.020-0.023with the addition of BAO data.These constraints are consistent with the latestPlanckprimary CMB analyses at the ≃ 1.6-2.2σlevel, and are in excellent agreement with galaxy lensing surveys.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Poststarburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained Hubble Space Telescope (HST)/WFC3 F110W imaging to measure the sizes of 171 massive ( spectroscopically identified PSBs at 1 <z1.3 selected from the DESI Survey Validation luminous red galaxy sample. This statistical sample constitutes an order of magnitude increase from the ∼20 PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies withpysersicand compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically ∼0.1 dex below the established size–mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ( ). These findings are easily reconciled by later ex situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection (b/amedian∼ 0.8), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between the time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with preexisting compact structures.more » « less
-
Abstract We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey spectroscopically calibrated by DESI. We detect this cross-correlation at a significance of 38σ; combining our measurement with thePlanck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50σ. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy withσ8, we perform a tomographic analysis in four LRG redshift bins spanning 0.4 ≤z≤ 1.0 to constrain the amplitude of matter density fluctuations through the parameter combinationS8×=σ8(Ωm/ 0.3)0.4. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective field theory (HEFT) model that allows scales as small askmax= 0.6 h/ Mpc, we obtain a 3.3% constraint onS8×=σ8(Ωm/ 0.3)0.4= 0.792+0.024-0.028from ACT data, as well as constraints onS8×(z) that probe structure formation over cosmic time.Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured byPlanck PR4 within 1.2σ. Jointly fitting ACT andPlanck lensing cross-correlations we obtain a 2.7% constraint ofS8×= 0.776+0.019-0.021, which is consistent with the Planck early-universe extrapolation within 2.1σ, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses atz< 0.6 to assess the impact of potential systematics or the consistency of the ΛCDM model over cosmic time.more » « lessFree, publicly-accessible full text available December 1, 2025
-
null (Ed.)ABSTRACT Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broad-band imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information, photometry of single galaxies, and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-z’s tightens the redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $$\Delta \bar{z} \approx 0.05,$$ the final biases in the posterior are $$\Delta \bar{z} \lesssim 0.003.$$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses.more » « less
-
null (Ed.)ABSTRACT We present the steps taken to produce a reliable and complete input galaxy catalogue for the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) using the photometric Legacy Survey DR8 DECam. We analyse some of the main issues faced in the selection of targets for the DESI BGS, such as star–galaxy separation, contamination by fragmented stars and bright galaxies. Our pipeline utilizes a new way to select BGS galaxies using Gaia photometry and we implement geometrical and photometric masks that reduce the number of spurious objects. The resulting catalogue is cross-matched with the Galaxy And Mass Assembly (GAMA) survey to assess the completeness of the galaxy catalogue and the performance of the target selection. We also validate the clustering of the sources in our BGS catalogue by comparing with mock catalogues and the Sloan Digital Sky Survey (SDSS) data. Finally, the robustness of the BGS selection criteria is assessed by quantifying the dependence of the target galaxy density on imaging and other properties. The largest systematic correlation we find is a 7 per cent suppression of the target density in regions of high stellar density.more » « less
-
Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. Atz< 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr< 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r< 20.175 color-selected sample (BGS Faint), and a smaller low-zquasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz< 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter.more » « less
-
Abstract The DESI Milky Way Survey (MWS) will observe ≥8 million stars between 16 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy’s 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public (Available at https://data.desi.lbl.gov/public/ets/target/catalogs/and detailed at https://desidatamodel.readthedocs.io).more » « less
An official website of the United States government
